The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^2 - 2*x1 + 1 x1 - 1 x1 - 1] [1 0 1 x1 0 1 0 2*x1 - 1 x1 -x1 -x1] [0 0 0 0 1 1 1 -x1^2 + 2*x1 - 1 -x1^2 + x1 -x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (6*x1^13 - 37*x1^12 + 97*x1^11 - 140*x1^10 + 120*x1^9 - 61*x1^8 + 17*x1^7 - 2*x1^6) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^2 - 3*x1 + 1, x1^2 - x1 + 1, x1^2 + x1 - 1, x1^3 + 2*x1^2 - 3*x1 + 1, 3*x1 - 1, x1^3 - 2*x1^2 + 3*x1 - 1, 3*x1^2 - 3*x1 + 1, 2*x1^2 - 4*x1 + 1, x1^2 - 4*x1 + 2]